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Abstract. Double-beta decay matrix elements (ME) for 76Ge are calculated with different quasi-random
phase approximation (QRPA)-based methods. First, the ME for the two-neutrino mode are computed
using two choices for the single-particle (s.p.) basis: i) 2− 4h̄ω full shells and ii) 3− 4h̄ω full shells. When
calculated with the renormalized QRPA (RQRPA) and full-RQRPA their values are rather dependent
on the size of the single-particle basis used, while calculated with proton-neutron QRPA (pnQRPA) and
second-QRPA approaches such a dependence was found to be small. The Ikeda sum rule was well fulfilled
within pnQRPA for both choices of the s.p. basis and with a good approximation within second-QRPA,
while the RQRPA and full-RQRPAmethods give deviations up to 21%. Further, the ME for the neutrinoless
mode are calculated with the pnQRPA, RQRPA and full-RQRPA methods. They all give close results for
the calculation with the smaller basis (i), while for the larger basis (ii), the results differ significantly either
from one method to another or within the same method. Finally, using the most recent experimental limit
for the 0νββ decay half-life of 76Ge a critical discussion on the upper limits for the neutrino mass parameter
obtained with different theoretical approaches is given.

PACS. 21.60.Jz Hartree-Fock and random-phase approximations – 23.40.Hc Relation with nuclear matrix
elements and nuclear structure – 23.40.Bw Weak interaction and lepton (including neutrino) aspects

1 Introduction

Since the nuclei which undergo a ββ-decay are generally
rather far from the closed shells, the QRPA-based meth-
ods have been extensively employed for computing ME in-
volved in the theoretical description of this process [1–27].
Moreover, in spite of the recent progress of the shell-model
and/or Monte Carlo shell model techniques [28] these
methods also remain, at least for the next future, the only
available for treating nuclear systems which are far away
from the closed shells. The pnQRPA [1] was the first adap-
tation of the standard QRPA for nuclear charge-changing
processes. One of its most important achievements was
after the pioneering work of [3] the success in explaining
the suppression mechanism of the two-neutrino double-
beta (2νββ) decay ME [4–7], reducing thus the large dis-
crepancy existing until that moment between the theoret-
ical and experimental ββ-decay half-lives. However, this
method faces the problem of a strong dependence of these
ME on the renormalization of the particle-particle com-
ponent of the residual interaction. Namely, if one repre-
sents the ME as function of the particle-particle interac-
tion strength (usually denoted by gpp), one observes that
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they decrease rapidly and cross through zero in a region of
physical values of this constant, making the task of fixing
it adequately difficult. To overcome this problem several
further developments of this method have been advanced
during the recent past. We remind here: the appropriate
treatment of the particle number non-conservation [10,
13], the inclusion of the proton-neutron pairing [19], the
double commutator method [12,14], computation of the
transitions to excited final states [14,15,24] as well as the
development of approaches going beyond the quasi-boson
approximation [9,16,18,20,27]. At this point it is worth
mentioning a nice feature of these higher-order QRPA
approaches: the like- and unlike-nucleon residual interac-
tions appear both in the next higher-order terms beyond
pnQRPA, obtaining thus a more realistic picture of the
competition between them in producing a ββ-decay. As
a result, calculated with these methods the ME become
more stable against gpp and the RPA breakdown point
is shifted towards the region of unphysical values of this
constant. This is why, the further improvement of such ap-
proaches seems to be the most promising line of develop-
ment for treating the nuclear ME involved in the ββ-decay
process.

The first method which has included higher-order
terms beyond pnQRPA was developed in [9] and further,
applied with some modifications in [15–17,22]. In this ap-
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proach the extension of the pnQRPA was done using a bo-
son expansion of both the phonon operators and transition
β± operators and retaining the next order in this expan-
sion beyond the quasi-boson approximation (QBA). Also,
this method allowed, for the first time, the computation
of ββ-decay rates to excited final states. An alternative
approach for extending pnQRPA is based on the idea of
replacing the uncorrelated QRPA ground state (g.s.) by a
correlated g.s., in the calculation of the expectation value
of the commutator of the two bifermion operators involved
in the derivation of the QRPA equations. The expecta-
tion values of the number operator in the QRPA corre-
lated g.s. are introduced in the quasi-boson commutators
of the pair operators and this leads to a renormalization
of the QRPA forward- and backward-going amplitudes.
This method (called RQRPA) was first developed in refs.
[29–31] for the standard QRPA and adapted later on for
charge-changing processes in ref. [18]. Within the RQRPA
a stabilization of the ME against gpp and a shift of the
RPA breakdown point towards larger (unphysical) values
of this constant are also observed. However, this method
has a main inconvenience consisting in an undesirable vi-
olation of the Ikeda sum rule (ISR). Some refinements in
the way of calculating the averages of the quasiparticle
number operator are proposed [20–23], but they result in
a rather small reduction of the violation.

In this paper we want to make a study of the ββ-decay
nuclear ME of 76Ge calculated with different QRPA-based
methods with the same set of parameters and for both two
neutrino and neutrinoless modes. The motivation of such
a study is given by some discrepancies concerning their
values which are still found in the literature, where simi-
lar calculations have been performed. First, we calculated
the nuclear ME involved in the 2νββ-decay mode using
the pnQRPA, RQRPA, full-RQRPA and second-QRPA
methods. One of our goals was to see to what extent the
size of the single-particle (s.p.) basis influences the values
of these ME and how one can explain the differences be-
tween various calculations. A similar study has been made
in [20] but only for the neutrinoless mode. Another point
we have focused on was to check the Ikeda sum rule (ISR)
in the framework of the above mentioned methods. Par-
ticularly, we would like to compare, under the same condi-
tions of calculation (i.e. same parameters and s.p. basis),
the various degrees of deviations obtained with these dif-
ferent methods and give possible explanations for the dif-
ferences. Further, the ME for the neutrinoless mode are
calculated with the pnQRPA, RQRPA and full-RQRPA
methods. The results are found to be close to each other
for all three methods in the case we used a smaller s.p. ba-
sis (9 levels), while for a larger one (12 levels) the results
differ significantly either within the same method or from
one method to another, for the two choices of the s.p. basis.
Then, using the most recent experimental results for the
two-neutrino and neutrinoless ββ-decay half-lives of 76Ge
[32,33], we fixed first the gpp constant and then extracted
new limits for the neutrino mass parameter. Finally, we
give a critical discussion on the values of this parameter
obtained with different theoretical methods. The paper

is organized as follows: in section 2 we will give a short
comparative description of the QRPA-based methods that
we used for the calculation. The results are presented in
section 3 and section 4 is devoted to the conclusions.

2 Formalism

In the QRPA-based methods one assumes the nuclear mo-
tion to be harmonic and the excitation QRPA operator
may have the following general expression:

Γm+
JMπ =

∑
k,l,µ≤µ′

[
Xm

µµ′(k, l, Jπ)A†
µµ′(k, l, J,M)

+Y m
µµ′(k, l, Jπ)Ãµµ′(k, l, J,M)

]
. (2.1)

Here the summation is taken with k ≤ l if µ = µ′. Xm and
Y m are the forward- and backward-going QRPA ampli-
tudes and A,A† the pair quasiparticle operators coupled
to angular momentum J and projection M :

A†
µµ′(k, l, J,M)=N (kµ, lµ′)

∑
mk,ml

CJM
jkmkjlml

a†µkmk
a†µ′lml

,

Ãµµ′(k, l, J,M)=(−)J−MAµµ′(k, l, J,−M), (2.2)

N is a normalization constant, which is different from
unity only in case when both quasiparticles are in the
same shell [20], µ, µ′ = 1, 2 and 1 ≡ protons, 2 ≡ neutrons.
Using the equation of motion method one can derive the
pnQRPA equations which, in the matrix representation,
may be written as(A B

B A
)

Jπ

(
Xm

Y m

)
= Ωm

Jπ

(U 0
0 −U

)
Jπ

(
Xm

Y m

)
, (2.3)

where the matrices A, B and U have the following expres-
sions:

AJ(µk, νl;µ′k′, ν′l′) =

〈0+
RPA|

[
Aµν(k, l, J,M), [Ĥ, A†

µ′ν′(k′, l′, J,M)]
]
|0+

RPA〉,
BJ(µk, νl;µ′k′; ν′l′) =

〈0+
RPA|

[
Aµν(k,l,J,M), [Ãµ′ν′(k′, l′, J,M), Ĥ ]

]
|0+

RPA〉, (2.4)

U=〈0+
RPA|

[
Aµν(k,l,J,M), [A†

µ′ν′(k′, l′, J,M)]
]
|0+

RPA〉.(2.5)

Here the Ωm
Jπ are the QRPA excitation energies for the

mode Jπ.
Within the pnQRPA the QBA is assumed, i.e. the

quasiparticle operators A,A† are bosons and satisfy ex-
actly the boson commutation relations:[
Aµν(k,l,J,M), A†

µ′ν′(k′, l′, J,M)
]
=N (kµ, lν)N (k′µ′, l′ν′)

× (
δµµ′δνν′δkk′δll′ − δµν′δνµ′δlk′δkl′(−)jk+jl−J

)
. (2.6)

In this way the Pauli principle is violated and this is a seri-
ous drawback of this method. To improve the situation in
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the RQRPA method the A, A† operators are renormalized
[18,20]:

Āµµ′(k, l, J,M) = D
−1/2
µkνk′Jπ Aµµ′(k, l, J,M), (2.7)

where the Dµkνk′ matrices are defined as follows:

Dµkνk′Jπ = N (kµ, lν)N (k′µ′, l′ν′)

× (
δµµ′δνν′δkk′δll′ − δµν′δνµ′δlk′δkl′(−)jk+jl−J

)
×

[
1− j−1

l 〈0+
RPA|[a†νlaνl′ ]00|0+

RPA〉

−j−1
k 〈0+

RPA|[a†µkaµk′ ]00|0+
RPA〉

]
. (2.8)

By inspecting (2.6) and (2.8) one observes that by this
renormalization one goes beyond the QBA by taking into
account the next terms in the commutator relations of the
A,A† operators which are just, essentially, the proton and
neutron number operators. It is worth mentioning that
they are taken into account within RQRPA only by their
averages on the RPA g.s.. The renormalization of theA,A†
operators is further carried onto the RPA amplitudes, on
the A,B matrices and on the RPA phonon operator also
obtaining a renormalization of them:

X̄m = D1/2Xm ; Ȳ m = D1/2Y m ;

Ām = D−1/2AD−1/2 ; B̄m = D−1/2BD−1/2, (2.9)

Γm+
JMπ =

∑
k,l,µ≤µ′

[
X̄m

µµ′(k, l, Jπ)Ā†
µµ′(k, l, J,M)

+Ȳ m
µµ′(k, l, Jπ) ˜̄Aµµ′(k, l, J,M)

]
. (2.10)

To calculate Ā and B̄, we need to determine the renor-
malization matrices D. This is done by solving a system
of non-linear equations for them by an iterative numerical
procedure. As input values one can use their expressions in
which the averages of the number operators are replaced
by the back-forwarded amplitudes obtained as initial so-
lutions of the QRPA equation.

In QRPA-type methods, before starting the RPA pro-
cedure, we need the occupation amplitudes (u, v) and the
quasiparticle energies, in order to get the image of the
RPA operators in the quasiparticle representation. This is
done by solving the HFB equations, which may include,
in the general case, both like- and unlike-nucleon pairing.
When one includes only like-nucleon pairing in these equa-
tions, the QRPA procedure described above was called
RQRPA [18,20,25,27], while when both types of the pair-
ing interaction are included it was called full-RQRPA [20,
25]. On the other hand, if one takes the D = 1, we get
back the QBA and these methods become pnQRPA and
full-QRPA, respectively.

In the second-QRPA method the principle of includ-
ing higher-order corrections to the pnQRPA and restor-
ing partially the Pauli principle is different. Here, the two
quasiparticle and the quasiparticle density dipole opera-
tors are expanded in a Beliaev-Zelevinski series [34]:

A†
1µ(pn) =

∑
k

(
A(1,0)

k1
Γ+

1µ(k) + A(0,1)
k1

Γ̃+
1µ(k)

)
, (2.11)

B†
1µ(pn) =

∑
k1k2

(
B (2,0)

k1k2
(pn)[Γ †

1 (k1)Γ
†
2 (k2)]1µ

+B (0,2)
k1k2

(pn)[Γ1(k1)Γ2(k2)]1µ

)
, (2.12)

where

B†
1µ(pn) =

∑
mk,ml

CJM
jpmpjnmn

a†jpmp
ajnmn

,

B̃1µ(pn) = (−)J−MB1µ(pn). (2.13)

The boson expansion coefficients A(1,0), A(1,0), B (2,0),
B (0,2) are determined so that eqs. (2.11)-(2.12) are also
valid for the corresponding ME in the boson basis.

Further, the transition β± operators in the quasiparti-
cle representation can be expressed in terms of the dipole
operators A1µ and B1µ:

β−
µ (k)= θkA

†
1µ(k) + θ̄kÃ1µ + ηkB

†
1µ(k) + η̄kB̃1µ,

β+
µ (k)=−

(
θ̄kA

†
1µ(k)+θkÃ1µ+η̄kB

†
1µ(k)+ηkB̃1µ

)
, (2.14)

where

θk =
ĵp√
3
〈jp||σ||jn〉UpVn;

θ̄k =
ĵp√
3
〈jp||σ||jn〉UnVp; ĵ =

√
2j + 1,

ηk=
ĵp√
3
〈jp||σ||jn〉UpUn; η̄k=

ĵp√
3
〈jp||σ||jn〉VpVN .(2.15)

Using the boson expansions (2.11)-(2.12), one also gets ex-
pressions of the transition operators beyond the quasibo-
son approximation. Thus, in the second-QRPA method,
the higher-order corrections to the pnQRPA are intro-
duced not only in the RPA wave functions (by improv-
ing the phonon operator with additional correlations), but
also in the expressions of the β± operators, and the pro-
cedure is now more consistent. The additional terms will
have, of course, an influence on the ME calculation of these
operators.

Further, we give the factorized forms of the two-
neutrino and neutrinoless ββ-decay half-lives that we used
in our calculations:[

T 2ν
1/2

]−1

= F 2ν |M2ν
GT|2, (2.16)

where F 2ν is the lepton space phase and

M2ν
GT=

∑
l,k

〈0+
f ||στ−||1+k〉〈1+

k |1+
l 〉〈1+

l ||στ−||0+
i 〉

El +Qββ/2 +me − E0
. (2.17)
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Table 1. Values of the renormalizing constants.

No. levels gph g2
ph g∗

pp gn
pair gp

pair gpn
pair

76Ge 9 1.0 0.8 1.0 1.230 1.057 2.071
12 1.0 0.8 1.0 1.011 1.034 1.751

76Se 9 1.0 0.8 1.0 1.138 1.214 1.653
12 1.0 0.8 1.0 1.031 1.194 1.502

In (2.17) l, k denote the two different sets of 1+ states
in the odd-odd nucleus obtained with two separate RPA
procedures applied onto the g.s. of the initial and final
nuclei participating in the ββ-decay. El is energy of the
l-th intermediate 1+ state, and E0 is the initial g.s. energy.

[
T 0ν

1/2

]−1

= Cmm

( 〈mν〉
me

)2

, (2.18)

where 〈mν〉 is the effective neutrino mass and

Cmm=F 0ν
1

(
M0ν

GT−
(

gv

gA

)2

M0ν
F

)2

=F 0ν
1 · (M0ν)2, (2.19)

F 0ν
1 is the phase-space integral and M0ν

GT and M0ν
F are

Gamow-Teller and Fermi matrix elements.

3 Results

3.1 Two-neutrino double beta decay

First, we have performed calculations of the nuclear
ME involved in the 2νββ decay mode of 76Ge using
the pnQRPA, RQRPA, full-RQRPA and second-QRPA
methods. For the s.p. basis we used two choices. We in-
cluded: i) the 12 levels belonging to the full sd, pf and sdg
shells, taking thus 16O as core and ii) the 9 levels belong-
ing to the full pf and sdg shells and taking thus 40Ca
as core. The s.p. energies have been obtained by solv-
ing the Schrödinger equation with a Coulomb-corrected
Woods-Saxon potential. For the residual two-body inter-
action there was taken the Brueckner G-matrix calculated
from a Bonn-OBEP. The quasiparticle energies and the
BCS occupation amplitudes were derived by solving the
HFB equation without and with proton-neutron pairing,
separately for the initial and final nuclei, with both choices
of the s.p. basis. For a complete calculation we included
in the model space the states with all the multipolarities
Jπ. The renormalization constants were chosen as follows:
gpp = 1.0 for all the multipolarities, except the 1+ channel
for which it was left as a free parameter, and gph = 1.0
for all the multipolarities except the 2+ channel where it
was fixed to 0.8, since for larger values the p-h interac-
tion in this channel is too strong producing the collapse
of the RPA procedure. The value of all the constants, in-
cluding those which renormalize the pairing interactions
are presented in the table 1.

In fig. 1 we displayed the M2ν
GT (in MeV−1) as func-

tion of gpp calculated with pnQRPA and second-QRPA

methods. The two curves for each method represent the
calculations performed with the two different s.p. basis. In
the figure is also drawn the line representing the ME value
corresponding to the latest experimental 2νββ-decay half-
life of the 76Ge, obtained by the Heidelberg-Moscow ex-
periment: T 2ν

1/2 = 1.55× 1021 y [33].

0.8 0.85 0.9 0.95 1 1.05

-0.05

0.05

0.15

0.25

Fig. 1. a) pnQRPA (12); b) pnQRPA (9); c) second-QRPA
(9); d) second-QRPA (12).

As was already observed in previous calculations [9,
15] the point where QRPA breaks down is pushed to
higher values of gpp in the framework of the second-QRPA
method as compared with the pnQRPA. The calculation
also shows that, within these two methods the values of
the ME do not depend significantly on the size of the s.p.
space, especially in the region around the experimental
value. The values of gpp which fit the best this experimen-
tal value are: 0.94 for both calculations performed with
pnQRPA and 0.99 and 1.01 for the calculation with 12
and 9 levels, respectively performed with second-QRPA.

0.8 0.85 0.9 0.95 1 1.05 1.1

-0.05

0.05

0.15

0.25

Fig. 2. a) full-RQRPA(12); b) full-RQRPA(9); c) RQRPA(9);
d) RQRPA(12).

In fig. 2 the same ME but calculated with RQRPA and
full-RQRPA methods are displayed. Contrary to the pre-
vious calculations, in this case the difference between the
results obtained with different choices of the s.p. space,



S. Stoica, H.V. Klapdor-Kleingrothaus: Double-beta decay matrix elements for 76Ge 349

Table 2. The numbers represent the deviations (in percents)
from the ISR calculated within the specified methods. The first
(second) numbers in the rows represent the calculation with a
s.p. basis containing 12 (9) levels, respectively.

pnQRPA RQRPA full-RQRPA second-QRPA
76Ge 0.23 0.26 20.06 21.34 17.68 17.29 2.7 3.7
76Se 0.41 0.48 19.66 19.94 17.12 16.91 3.13 4.18

within the same method, is rather large. Indeed at values
of gpp, where M2ν

GT crosses the line representing the exper-
imental result, the values for the ME, obtained with the
same method, differ from each other by up to 40 − 50%
when the two different choices of the s.p. basis are used.
The values of gpp for the best fits with the experimen-
tal value for the ME are: 0.977; 0.982 in the case of the
RQRPA and 0.975; 1.012 in the case of the full-RQRPA
for calculations including 9 and 12 levels in the s.p. basis,
respectively. The differences persist when the s.p. basis
was enlarged to 21 states. This different behavior of the
calculation, obtained with RQRPA and full-RQRPA on
one side, and with pnQRPA and second-QRPA one the
other side, in connection to the choices of the s.p. basis,
reflects the sensitivity of the former methods in comput-
ing the M2ν

GT ME. One possible source of this sensitiv-
ity might have its origin in the numerical computation.
Indeed, the self-consistent iteration procedures for solv-
ing the full RQRPA equations, for all the multipolarities,
are very time-consuming and rather slow converging and
might affect the precision of the calculation. For more re-
liable calculations improved numerical techniques are in
our opinion further required.

On the other hand, there are some theoretical argu-
ments which could explain the different results for the ME
obtained with RQRPA-like methods as compared to the
other two. We will discuss them later, after having dis-
cussed the ISR.

The ISR

S−−S+=Σm|〈0+
g.s.||β−

m||1+
m〉|2−Σm|〈0+

g.s.||β+
m||1+

m〉|2(3.1)

was checked out in the framework of the four methods.
The results are presented in table 2, where the percentages
of deviation from the correct value for each method and
choice of the basis are given. The first values in the row
represent the calculations with a s.p. basis with 12 levels,
while the second numbers refer to the same calculation,
but with 9 levels.

One can see, as expected, that within the pnQRPA the
ISR is very well fulfilled, while within RQRPA and full-
RQRPA the deviations are between 17−21%. One can also
observe that within second-QRPA the deviations from the
ISR are rather small, confirming the result reported earlier
in refs. [15,16], but at that time calculated including only
the 1+ channel and 9 levels in the s.p. basis. We should
mention that in the present second-QRPA calculation we
did not take into account the three boson states which
may introduce undesirable spurious states in the QRPA

space. Including such states one also gets deviations up to
17% from the ISR. Looking for some theoretical arguments
for a possible explanation of the different extent to which
the ISR is fulfilled within the RQRPA and second-QRPA
methods, one finds that one reason could be the existence
of some inconsistencies of the RQRPA related to the way
of partial restoration of the Pauli principle.

Indeed, as we already mentioned in section 2, within
the RQRPA method the Pauli principle is partially re-
stored for the operators A, A†, by taking into account the
averages of the quasiparticle-number operators in their
commutator relations. However, there is no justification
to neglect them in the B,B† operator commutation rela-
tions. Within the second-QRPA higher-order corrections
beyond pnQRPA are taken into account in the expres-
sion of these operators and moreover, such corrections are
also introduced in the expressions of the β± operators.
The effect of the additional terms combined with a larger
boson space (in the second-QRPA the boson space en-
larges from one to two boson states) reflects in a positive
contribution to the ISR. On the other hand it is known
that RQRPA underestimates the ISR, so this could be one
possible explanation why the ISR is better fulfilled within
second-QRPA.

0.8 0.9 1 1.1 1.2

-1

0

1

2

3

4

5

Fig. 3. a) RQRPA(9); b) pnQRPA(9); c) RQRPA(12); d) pn-
QRPA(12).
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Fig. 4. a) full-RQRPA(9); b) full-RQRPA(12).
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Table 3. Neutrinoless ME and upper limits for the neutrino mass parameter for 76Ge, calculated with a phase space F 0ν
1 =

6.31× 10−15 y−1 [26] and T 0ν
1/2 > 1.9× 1025 y (90% c.l.), and 3.1 · 1025 y (68% c.l.) [33]. The non-dimensional values of various

ME are taken and reconverted, when necessary, from the indicated references. For the present work two values, representing
the calculation with 12 and 9 levels for the s.p. basis, are displayed.

[8] [11] [2] [28] [25] [35] Present work

M0ν 4.25 4.26 4.85 1.57 1.92 2.80 2.36(12) 3.62(9)
〈mν〉 (eV) 90% 0.345 0.328 0.304 0.940 0.768 0.527 0.625 0.407
〈mν〉 (eV) 68% 0.27 0.26 0.24 0.73 0.60 0.41 0.490 0.320

Another possible shortcoming of the RQRPA method
is a lack of consistency between BCS and QRPA levels.
While in the BCS still one assumes the g.s. to be the
quasiparticle vacuum at the level of RQRPA we are deal-
ing with the non-vanishing quasiparticle content of the g.s.
due to the additional scattering terms taken into account
in the commutation relations [27].

3.2 Neutrinoless double-beta decay

Further, we have performed a calculation of the neutrino-
less ME using pnQRPA, RQRPA and full-RQRPA meth-
ods, also for the two s.p. basis. The M0ν as function of
gpp calculated with the pnQRPA and RQRPA are dis-
played in fig. 3, while the same ME but calculated with
the full-RQRPA are displayed in fig. 4. One observes that
all the three methods used for calculation give different
values of the ME for different choices of the s.p. basis.
The differences between ME values calculated with 9 and
12 levels included in the s.p. basis, within the pnQRPA
and RQRPA methods, are given by factors of 3 and 2.5,
respectively, while for the full-RQRPA method the differ-
ence between the two calculations reduces to a factor of
about 1.6. One also observes, that the values of the ME
obtained with the three methods are close to each other
(3.9-4.1) in the calculation with the smaller basis. When
enlarging the basis to 21 levels, the result is close to that
obtained with the basis with 12 levels. This again reveals
the sensitivity of the RQRPA-type methods to the choice
of the s.p. basis and seems to indicate a possible stabi-
lization of the results for larger basis. However, a general
conclusion about which basis is better to choose is diffi-
cult to give until we have not the whole image of a similar
study performed on several other double-beta emitters.
Another still open question is what are the results when a
similar calculation is performed with the second-QRPA.

Finally, using the value of the gpp constant, fixed from
the M2ν

GT calculation to fit the most recent half-life, i.e. 1.0
(very close to the average value between the two second-
QRPA and full-RQRPA calculations), and using the most
recent experimental limit of the neutrinoless mode half-life
for the 76Ge case (i.e. > 1.9×1025 y (90% c.l.) reported by
the Heidelberg-Moscow experiment [33]) we extract new
upper limits for the neutrino mass parameter within the
full-RQRPA method. We obtain the values = 0.407 eV
and 0.625 eV, if we use in the calculation a s.p. basis with
9 and 12 levels, respectively. In addition, in table 3, be-
sides our values for the ME and neutrino mass parameter,

we present results of other calculations found in the lit-
erature. For a direct comparison between various results
we use non-dimenssional values for all the ME taken from
the references indicated in the table. Further, using the
same phase space factor F 0ν

1 = 6.31× 10−15 y−1 [26] and
the same half-life reported in ref. [33], we extracted up-
per limits for 〈mν〉 corresponding to all values of the ME,
in order to have a more complete image of the evolution
of the theoretical predictions. Performed with pnQRPA,
the older results are very similar, although they were cal-
culated by different groups and with different numerical
codes and parameters [8,11]. One also observes that their
values are larger by a factor of about two than the val-
ues obtained by using the recent extensions of pnQRPA,
RQRPA and full-RQRPA. However, it should be kept in
mind that these last approaches do not fulfill the ISR and
thus lead a priori to too small ME, i.e. too large neu-
trino mass limits . Our calculations performed with the
larger s.p. basis give ME rather close to those of ref. [35]
were corrections due to the nucleon currents such as weak
magnetism and pseudoscalar couplings to the amplitude
of 0νββ have been taken into account. The use of the
smaller s.p. basis yields a value for the ME which is close
to the earlier approaches [5,8,11]. It should be pointed
out that corrections due to nucleonic currents mentioned
above were not make in the present study.

On the other side there are the values of the ME cal-
culated with the shell-model in refs. [2,28] which differ
from each other by a factor of 3. However, in our opinion,
these calculations performed with the shell model are not,
at present, reliable enough. This has been stressed also
by [36]. In ref. [2] the calculations were performed with a
rather crude shell-model code in a weak coupling approxi-
mation, at the computer performances of that time. Also,
in calculations of ref. [28] some important orbits are miss-
ing, like some spin orbit partners, resulting in a violation
of the Ikeda sum rule of about 50%, which means it should
be expected that they give too small ME.

4 Conclusions

We have performed a calculation of the two- and zero-
neutrino ββ-decay matrix elements for the case of 76Ge
with the pnQRPA, second-QRPA, RQRPA and full-
RQRPA methods, using two different choices of the s.p.
basis. We can summarize the main results as follows.

i) For the M2ν
GT we got a significant dependence of the

results on the size of the s.p. basis, in the case of the
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RQRPA and full-RQRPA methods, while the results ob-
tained with pnQRPA and second-QRPA do not display
such a dependence.

ii) For the neutrinoless decay mode all the three meth-
ods used for the calculation, i.e. pnQRPA, RQRPA and
full-RQRPA, give differences between 9 and 12 level cal-
culations by factors 1.6–3. The values of the ME obtained
with the three methods are close to each other for the
calculation with the smaller basis, while they differ signif-
icantly when the calculation is done with the larger basis.
i) and ii) reveal a sensitivity of the RQRPA methods to
the size of the s.p. basis which is used. This could have
its root in the numerical double-iteration procedure used
in RQRPA-type calculations and in our opinion further
improvements should be done in this respect.

iii) We also checked the ISR within the four methods
and found it to be fulfilled with a good approximation
within the second-QRPA method, while with RQRPA and
full-RQRPA the deviations are up to 21%. We found that
this result is not much dependent on the size of the s.p.
basis used. This result, besides the numerical arguments
mentioned above, might also be explained by theoretical
arguments related to the way the partial restoration of the
Pauli principle is done within RQRPA. The restoration is
made in the commutator relations of the operators A, A†
by taking into account the averages of the quasiparticle-
number operators in their commutator relations. However,
there is no justification to neglect them in the B, B† oper-
ator commutation relations. However, this is done within
the second-QRPA and moreover, in this method the next
higher-order corrections beyond pnQRPA are also taken
into account for the β± operators. The additional terms
give a positive contribution to the ISR, while as is known
RQRPA underestimates the ISR.

iv) Using the most recent reported neutrinoless half-
life limit, and using the value of gpp fixed for the 2ν neu-
trino mode calculation, we extracted new upper limits for
the neutrino mass parameter. A critical comparison be-
tween various values of the ME found in the literature was
performed. One may conclude that the values of the ME
involved in 0νββ-decay of 76Ge can be reliably predicted
within a factor of two.

Finally we would like to stress that considering the var-
ious approximations made in the different calculations (vi-
olation of Ikeda sum rule), and neglect of weak magnetism
and pseudoscalar coupling in all approaches except in [35]
(another 30%), the tendency goes to a variation within
the different approaches of only a factor of 1.5, and to
favouring the smaller deduced neutrino mass values.

One of the authors (SS) would like to thank the Max Planck Is-
titut für Kernphysik for the hospitality extended to him during
his stay in Heidelberg.
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